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Abstract 
In this paper, we propose methods for fusing multivariate physiological vital sign data observed 
over a common time into univariate data. The approaches rely on noncentral moment-based 
statistics derived from the physiological vital sign random variables. Thus preserve the vital sign 
specific auto-correlations and appropriately control the within-vital sign extreme observations 
automatically so that such observations are utilized in the model specification without being 
deleted. Data mixing factors and weights are developed and allowed to depend on the fusion 
statistics so as to inherit their appealing features. This way, a single model can be fitted to the 
composite data instead of multiple models for the unfused data resulting in computational and 
memory savings. Implementation of the approaches using real vital sign data illustrates the utility 
of the schemes in extracting appropriate univariate data from the multivariate data that can be 
handled in terms of the common time within the functional regression framework. 
Keywords: Multivariate vital signs, Composite vital sign, Data fusion, Single-task modelling, 
multi-task modelling, Fusion statistics. 
 
1 Introduction 
Physiological vital sign modelling has piqued the interest of many researchers within the statistics 
community because of its link with health conditions. They have been found to provide insights 
on early signs of health deterioration, and have been applied for identification of deterioration in 
health [Gao et al., 2007, Khalid et al., 2013, Pimentel et al., 2013]. Thus, they are considered key 
elements in health monitoring worldwide [Buist et al., 1999, Evans et al., 2001]. For instance, 
physiological vital signs are utilized in the assessment of the quality and clinical properties of 
drugs in public health through empirical statistical measures of overall quantity. A typical example 
of such statistics is the smoothness index of physiological vital signs used in hypertension 
management and treatment [Rizzoni et al., 2019, Parati et al., 2014, Mancia and Parati, 2001]. The 
smoothness index is computed as a ratio between the mean hourly change in vital signs over 24 
hours, divided by the standard deviation [Mancia and Parati, 2001]. Interestingly, a practical utility 
of the above statistic is seen in the assessment and differentiation of antihypertensive agents by 
the latest hypertension management standard [Mancia and Parati, 2001, Rizzoni et al., 2019]. 
Furthermore, another line of the application of physiological vital signs is seen in the conventional 
health monitoring scheme termed the Early Warning (EW) score applied in most Intensive Care 
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Units (ICU) and surgical wards worldwide. Under this scheme, vital signs readings from bedside 
monitors attached to patients are continuously tracked by nurses with composite numerical scores 
computed from all the vital signs and applied to prioritize care and treatment [Evans et al., 2001, 
Gardner-Thorpe et al., 2006]. 
Alternative to the empirical treatment of health monitoring based on the EW ecosystem is the 
model-based approaches for which the literature has registered remarkable proposals. Pimentel et 
al. [2013] identified deterioration in the health of upper-gastrointestinal surgery patients based on 
their physiological vital signs. Kernel density estimation (KDE) [Silverman, 1986, Scott, 2015] 
approach was adopted to develop probability density function(pdf)-based monitors for each vital 
sign characterizing normal and abnormal groups with the grouping conducted using available 
patient admission information. Inference in terms of decision making was achieved via a 
comparison of pdf-based novelty scores with a common threshold computed from the normal 
group. Velardo et al. [2014] successfully prioritized chronic obstructive pulmonary patients for 
clinical review using kernel density estimation-based vital sign deterioration detectors in the 
univariate and multivariate dimensions. Khalid et al. [2013] proposed a Gaussian process 
regression-based deterioration detection in physiological vital signs in the univariate direction. 
Their approach outperformed an appropriate empirical approach using KDE. 
The physiology of humans can be viewed as a complex system consisting of vital organs which 
work together in a complex manner to define the overall health of an individual. The dynamic 
inter-relationship existing among these vital organs and health is not fully known or understood 
by scientists. However, with the knowledge of the characteristic functions of the physiological 
organs, physicians through convectional ways are able to determine whether a person is sick or 
otherwise. They do this by examining sample observations from these physiological vital signs 
presented by patients coupled with other factors such as diet, activity, etc. This provides an 
empirical conventional way of assessing ailment and treatment. This suggests that the composite 
of all vital signs is pivotal in making an informed and precise decision on the health condition of 
a given individual. However, the question of how to derive an appropriate composite vital sign via 
fusing the individual vital signs together in an unbiased manner whiles preserving the underlying 
associations existing among these vital signs becomes clearly apparent. Most importantly, for 
physiological vital signs, autocorrelations can be informative on the underlying vital sign specific 
dynamics and can be a source of indication of early signs of health-related issues if detected on 
time. We argue that statistical approaches for fusing multiple vital signs into a univariate vital sign 
trajectory taking into account the existing autocorrelation among them, while controlling extreme 
observations stand to improve health monitoring significantly. 
Fusing of multi-physiological vital signs generated by systems operating under the same 
conditions into a univariate vital sign is important in many ways. First, it has the potential to 
facilitate easy modelling and fitting of statistical models in that the un-fused data may require 
multiple models as well estimation of unknown parameters, compounding the computational 
expenses associated with such datasets. Though these multiple models can be fitted simultaneously 
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with the application of some statistical techniques such as multivariate multiple regression etc., the 
issues with computational overload cannot be ignored. Furthermore, in areas of application where 
the smoothness index of vital signs and their relationship with available covariates is of interest, 
such as the management and treatment of hypertension, fused vital signs will provide a principled 
way to compute composite smoothness index for easy application and parsimony. The combined 
effect of multiple vital signs can be very informative on some hidden physiological threat or issue 
that may require urgent attention. This is important during pandemics such as the COVID 19 where 
pragmatic treatment intervention is of the utmost interest with its effect on human interaction. This 
paper focuses on lightweight statistical methods for fusing multiple physiological vital signs into 
a composite univariate vital sign that allows automatic control for extreme observations within 
vital signs while maintaining the vital sign-specific autocorrelations. To the best of our knowledge, 
this paper is a premier on the extraction of composite vital sign trajectory from multi-physiological 
vital signs monitored over common time stamps. 
The rest of the paper assumes the following structure. The data fusion model is formally introduced 
in Section 2. Section 3 introduces in brief, the moment-based approach for selecting appropriate 
fusing statistics considered in the fusion proposal outlined in Section 2. Section 4 outlines the 
performance measures for assessing the proposed methods with direction for the implementation 
of the methods detailed. Real data application using health data is given in Section 5, and Section 
7 concludes. 
2 Data fusion model 

Let 1 2, , , ,py y y y      1 2, , , ,j j j njy y y y   1 2, , ,j p   denotes a physiological vital signs 

data associated with a common time stamp. The inter-correlations existing among the defining 
variables of the data suggests that the variables can be combined appropriately into composite 

variable. Let 1y denotes the composite (fused) data generated by .y  We consider the following 

data fusion models for 1.y  
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The selection of T(y) is discussed in Section 3. The use of the statistics,  iV y  and  iZ y for 

generating appropriate shape restricted features is motivated by the fact that they have known 

sampling distributions for large samples. In particular, it can be shown that  iZ y and  iV y follow 

standard normal and Chi-square distributions by the Central limit Theorem. In this paper, we 

consider the estimation of i  using î  

 
 

                                            (4)ˆ ,i
i m

T y

C y
   

where        1 2, , ,m m m m
pC y C y C y C y     is the set of maximum values of   .T y  That is, 
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with the ability to control extreme observations. It is straightforward to see that j  in (1), (2) and 

(3) is not restricted to be a probability due to the use of the standard random variables. One can 
also consider mixing weights by just converting the   into probabilities. Mixing weights based 
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Such that 1.j   Consequently, the corresponding data fusion models based on the mixing 

weights, i  can be obtained by replacing i  with i  in (1), (2) and (3), yielding 
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3 Selection of feature T(y) 

The statistic  T y  is crucial in the fusion process since the data fusion models are dependent on 

it. As a result, its selection must be given a particular attention. Not every statistic can deliver the 
expected results, since the data exhibits non-linear trends. Also, there may exist extreme 

observations and inter-relationships among the defining variables of the data.  T y  must be able 

to capture such information so that the nature of the data is preserved. In particular, the model for 
the above statistic should be able to handle such features automatically. We consider model (8), 

for computing  T y . 

                                                             (8),T y yf y  

     1 1 , , ,p pyf y y f y y f y     with the associated density functions   1, , , ,jf y j p 

estimated using kernel density estimation. In what follows, we illustrate the kernel density 
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estimation procedure. For jy  with observations 1 2, , , ,j j njy y y , the density function is estimated 

for each observed value using (9). 

     
1

1 1
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n
ij lj

ij hj ij lj hj ij lj
l j j

y y
f y K y y K y y K

n h h

 
      

 
  

for a symmetric kernel function  .hjK  and smoothing parameter, jh . The kernel density 

estimation provides a formal approach to estimate the underlying probability density function of 
a given dataset empirically. For an introduction to kernel density estimation, its implementation, 
and practical applications, see, for example, [Scott, 2015] and [Silverman, 1986]. 
The proposal in (8) is motivated by moments of random variables (probability distributions). In 

particular, for the jth random variable jY , the kth non-central moment is defined as 

                                           (10)k k
j j j jE Y y f y dy      

Setting 1,k   (10) reduces to the usual measure of center termed the expected value. It is not 

difficult to see that, the integrand,  ,j jy f y  in (10) provides a principled way to assess the 

contribution of the observations generated by .jY  In particular,  f y  serves as natural weights, 

penalizing observations according to their numerical strength and spatial positions under the 
probability density function. This reflects the relative importance of each observation to the 

common center associated with the density function of jY . Practically, the weighting is such that 

observations in the neighborhood of the common center are weighted less in comparison with those 
at an appreciable distance from such center. In this regard, it becomes easy to perceive how 
individual observations are automatically handled within the probability density domain. Thus, 
outlying or extreme observations will have fair treatment under the probability density function of 
a given random variable regardless of the nature of the distribution. 

Notably, the statistic,  j jy f y  inherits the above vital characteristics of  jf y  automatically, 

making it appealing for generating robust features for data fusion. The presence of outlying 

observations does not pose any threat to the fusion since they are handled appropriately via  .jf y

Outlying observations are those with a deviant pattern from the common pattern suggested by the 
data. They usually appear at the tails of the probability density function that best defines the data. 

As a result, they have low  .jf y  values and yield relatively lower contribution values,  j jy f y

. Generally, moments of probability distributions or random variables define important features of 

the distributions of random variables. Thus, the choice of  T y  based on such statistics, allows 

 T y  to inherit the key features of the underlying moment used. 

4 Performance assessment 
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We focus on the ability to preserve the underlying pattern, features, and dynamics of the original 
data in the fused or composite dimension. The fundamental characteristic of an appropriate statistic 
for extracting a composite data with input being a multi-dimensional data is its order-preserving, 
pattern preserving capabilities in line with the original data. Of importance, is the pattern 
preserving characteristics, since any distortion in the composite data may convey different 
information from that contained in the original data. This may eventually lead to model miss-
specification coupled with inappropriate practical implications. The implementation of the 
methods and algorithms was conducted using the R statistical software. For the probability density-
based fusing methods, the kernel density estimation was done using the kernel smoothing package, 
“ks” in R [Duong et al., 2007]. The smoothing parameter hi in (9) was set to the smoothed cross-
validation estimator implemented in the above package. All the codes were written in R and run 
on an Intel (R) Core (TM) i7, 6700 processor Windows PC 3.40 GHz workstation. 
5 Example: Health data application 
We exemplify the utility of the proposed methods with real health data. The dataset is a real 
physiological vital signs data from Biofourmis, a Health Data Analytic Company. It is multivariate 
in nature with dimension 848 × 5, generated by variables, Systolic blood pressure (SBP), Diastolic 
blood pressure (DBP), Mean arterial pressure (MAP), Pulse Rate (PP), and Heart Rate (HR). There 
exist some patient-specific covariate information on Gender, Age, Height, Weight, and Race, also 
available. Nevertheless, in this application they were not utilized since they were not useful in the 
current illustration. The data collection was based on a structured study by SingHeart with a group 
of Asians. The subjects were continuously monitored over a period based on varied physiological 
states corresponding to different activities, for example, sleeping, walking, exercising, sitting, etc. 
The application here utilized a de-identified version of the data in order to address the issue of 
sensitive patient information. We provide an exploratory analysis of the dataset in brief. The 
typical nature of each of the corresponding vital signs characterizing the physiological vital sign 
data are shown in Figure 1. The functional nature of the vital signs trends is evident with each 
exhibiting varied frequencies according to the intrinsic features of the sample patients. It is clearly 
obvious from the graphs that some points are substantially deviating from the common functional 
pattern evident in each of the vital signs data. This departure observed may be due to many hidden 
reasons or factors, thus, these points can be viewed as potential outliers. 
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Figure 2 shows boxplots of vital signs. Clearly, all the vital signs are skewed to the right with Pulse 
Pressure (PP) exhibiting the highest skewness and Diastolic Blood Pressure being the modest. 

 
Figure 3 illustrates the presence of inter-relationships existing among the physiological vital signs. 
The numbers on the graphs are the Pearson Correlation Coefficients. Clearly, there exist linear 
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relationships among physiological vital signs. For example, SBP is highly positively related to 
MAP and DBP with Pearson Correlation Coefficient values of 0.82 and 0.70 respectively. It can 
be observed further that there exists evidence of right skewness of the distributions of the variables. 
This is evident by the plot of the density functions of the variables as identified in Figure 2. 

 
6 Results and Discussion 
The key principle in fusing multivariate functional data into a composite univariate functional data 
is the ability to obtain common patterns for defining variables of the dataset. As it is well-known 
in regression analysis that near points offer better prediction of given points than points that are at 
an appreciable distance. Thus, we argue that similar features from each of the defining variables 
underlying a p variate multivariate dataset, can ensure appropriate fusing than variable features. 
Most especially, if the fused pattern is expected to mimic the underlying data structure in order to 
convey the same information in the original data. For practical purposes, similar features would 
by no doubt provide a better background for deriving composite patterns, with the ability to allow 
simple basis for comparison. Figure 4 shows the estimated probability density functions of the 
standardized (left)and unstandardized (right) vital signs data using model (9). The differences 
among the vital signs are clearly evident. Also, the value of standardization in obtaining common 
distributional characteristics is clearly illustrated, evidenced by the level of closeness of the density 
functions observed in both plots. 

Figure 5 shows the nature of the contribution statistic  T y  in relation to each of the vital sign 

observations for both the standardized (left) and unstandardized (right) data. It can be observed 
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that the  T y  statistic can yield similar (common) pattern for the defining variables of the 

multivariate dataset with the effect of standardization clearly illustrated. Also,  T y  appears to be 

a good candidate statistic within the standardized variable context for fusing multivariate vital 
signs into a univariate vital sign. 
Figure 6 illustrates the vital sign-specific contribution pattern underlying the multivariate 
physiological dataset. The green lines denote the maximum contributions. Clearly, the contribution 
pattern is nonlinear, adding to the appropriateness of such statistics for use as building block for 
fusion statistics, since the original data pattern is nonlinear. The differences among the vital sign-
specific observations are apparent. Furthermore, it can be observed that the efforts and importance 

of each observation generated by a vital sign are easily quantified and assessed via the  T y  

statistic. 

The utility of the  V y  statistic in the extraction of common features across vital signs as a basis 

for fusing multivariate vital signs into a one-dimensional vital sign is shown in Figure 7. The plot 

on the left is the plot of  V y  against each of the standardized vital signs. The plot on the right 

shows the plot of  V y  against each of the unstandardized vital signs. It can be observed that the 

features generated by this statistic exhibit a similar pattern with the underlying difference existing 
among the vital signs illustrated high for the unstandardized variables. 

Figure 8 shows the underlying patterns of the vital sign-specific  Z y  statistics for both the 

standardized and unstandardized datasets. Again, clear differences exist among the patterns 
generated by the two datasets, with the standardized dataset exhibiting more compact patterns than 
its unstandardized counterpart. 
Figure 9 shows the plots of the mixing factors (θ) and weights (ρ) against the vital signs for the 

standardized dataset. It can be observed that the mixing factors mimic the pattern of the  T y

statistic while the mixing weights inherit the nature of the  V y  statistic. This characteristic of the 

mixing factors and weights is of key importance in extracting composite physiological vital sign 
trajectory from a multivariate vital sign dataset where the presence of extreme observations is 
inevitable. This is because they exhibit the ability to control extreme observations automatically. 
In addition, the expectation that the output should be functional and mimic the underlying 
physiological vital signs to enable encoding of the condition of health for pragmatic health 
monitoring with practical importance. It is important to note that the mixing weights and factors 
can exhibit variant patterns from those underlying the true vital sign, especially when they are built 
from sources that do not preserve the order of the observations as well their status in relation to 
the common data structure underlying the dataset. 

Figure 10 shows the plot of the mixing factors and weights against the  T y  statistic based on the 

standardized dataset. The difference in the relationship existing among the mixing factors and 
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weights and the contribution statistics is evident. Nevertheless, similar patterns are reported by all 
the vital signs for both the mixing factors and weights. 

Figure 11 presents the plot of vital sign-specific highest contributors measured using the  T y

statistic for the standard dataset. Clearly, there exist multiple highest contributors among each of 
the physiological vital signs. However, they are handled uniquely in such a way that the composite 
vital sign trajectory is not affected. Most importantly, repeated observations are inevitable in a 
physiological vital sign dataset and the ability to handle such observations without compromising 
on their locations and contributions is vital in allowing their intrinsic relationships with the 
condition of health to be incorporated into modelling. This allows development of intelligent 
statistical models for providing pragmatic health monitoring schemes. Also, the ability of the 
proposed methods in handling repeated observations is evident.  
Table 1 and Table 2 report the estimates of the smoothing parameters, ih  and variances, i , of the 

contribution statistic,  iT y  for the standardized and unstandardized vital sign datasets 

respectively. Marginal differences exist among the smoothing parameters of the standardized vital 
signs yielding a similar level of smoothness in the resulting density estimates. On the other hand, 
significant differences exist among both the ih s and is . 

Figure 12 shows the vital sign-specific trajectories underlying the physiological dataset. The 
functional nature of the vital sign dataset is clearly illustrated. Also, the differences in the 
physiological trajectories are clearly evident. 
Figure 13 shows the plot of the composite physiological vital sign trajectory obtained by fusing all 
the five vital sign trajectories in Figure 12. From left to right of the first row are the plots for 

1 1 1  and , ,t v zy y y  respectively. However, row two presents the plots for 2 2 2  and , ,t v zy y y  respectively 

from left to right. We are able to derive functional univariate physiological vital sign trajectory 
preserving the common pattern underlying the dataset. Also, the order of the observations is 
preserved in the composite vital sign trajectory. Nevertheless, there exist some minor differences 
among the composite trajectory obtained using the mixing factors and weights, evident in the plots 

in the last two columns. Finally, though the fusing statistics,  T y ,  V y  and  Z y  are shape 

restricted, they do not influence the pattern of the composite vital sign. Thus, the proposed methods 
preserve the true pattern of that underlies the multivariate physiological vital sign data. 
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7 Conclusion 
This paper proposed and implemented a novel empirical approach for fusing multivariate 
physiological vital signs data observed over a common time-stamp into univariate physiological 
vital sign data. The fusing is done through mixing factors, mixing weights, and fusing statistics 
generated by the vital signs-specific variables such that the within and between vital sign-specific 
differences in pattern underlying the original data are preserved. The fusing statistics are built 
using candidates from non-central moments of the random variates such that the probability 
density function values of observations serve as natural weights, penalizing the observations 
according to their contributions to the vital sign specific common center associated by the vital 
signs. The mixing factors and weights are computed as functions of the fusing statistics; thus, 
allowing them to inherit their desirable intrinsic characteristics. 
The probability density functions of vital signs used as a building block of the fusing statistics are 
estimated using the kernel density estimation approach. This allows the fusing approach to 
automatically handle vital sign-specific autocorrelation and extreme value control such that all 
observations are employed without loss of information. The utility of the methods is demonstrated 
using real multivariate vital signs dataset with common time stamps. 
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