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Abstract 
The presence of outlying observations within the predictor space of the dataset for binary logistic 
regression can impact significantly the predictive performance of the developed classifier for 
public health problems. In this regard, this paper considers improving the predictive performance 
of the binary logistic classifier for Gestational Diabetes Mellitus prediction using alternative 
predictors termed robust predictors. These predictors are based on the computation of non-central 
moments of probability density functions of the original predictors. With this treatment, the 
relative importance of predictor-specific observations is easily assessed with outlying observations 
handled automatically and utilized for model fitting without being deleted. This way, the predictors 
become robust to extreme observations, and predictor-specific autocorrelations, allowing easy 
extension of binary logistic classifiers to public health problems for which outlying observations 
are inevitable. Appropriate Binary logistic regression models using the alternative predictors were 
developed within both the Classical and Bayesian paradigms with their utility illustrated with both 
simulated datasets and real gestational diabetes mellitus datasets, in comparison with existing 
current proposals. 
Keywords: Gestational diabetes mellitus, Logistic regression, Bayesian inference, Alternative 
predictors, Kernel density estimation  
 
1 Introduction 
Diabetes is one of the key public health problems worldwide due to its contribution to cause of 
death. This disease is rated the ninth leading cause of death globally [WHO, 2020]. Also, the 
International Diabetes Federation (IDF) reports that about 463 million cases of diabetes occurred 
worldwide [IDF, 2020]. Fortunately, or unfortunately, approximately 50.09% of these cases 
remained undiagnosed [IDF, 2020]. In the light of this, prompt diagnosis and subsequent treatment 
are regarded as the key measures and interventions needed to mitigate complications that lead to a 
substantial decrease in patients’ quality of life and even death which are usually preventable 
through timely detection and identification of risk factors [Bantie et al., 2019, IDF, 2020]. As a 
result, diabetes modeling and prediction have piqued the interest of researchers within the 
statistical community. 
In recent times, cutting-edge techniques for timely identification and prediction of diabetes 
mellitus has been explored based on the exploration of existing machine learning (ML) algorithms 
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to gain useful insights into accessible clinical diabetes data. Notable of these techniques are the 
Binary logistic regression, Support vector machine (SVM), Random Forest Decision tree, K- 
Nearest Neighbors and Näıve Bayes models [Kavakiotis et al., 2017, Ahuja et al., 2019, Mujumdar 
and Vaidehi, 2019]. 
It has been established that the predictive performance of binary logistic regression model can be 
impaired by the presence of extreme observation(s) as well as noise in a binary dataset [Gelman, 
2007]. Motivated by the observation made by Gelman [2007], the literature has registered some 
exploration of the integration or joint-use of existing standard statistical methods such as the K-
Means clustering, and Principal Component Analysis (PCA) in the ML algorithms.  
Iyer et al. [2015] proposed decision tree and Näıve Bayes models for diabetes prediction, in which 
result yielded an efficient model with some level reduction in error rate. Jhaldiyal and Mishra 
[2014] considered the integration of principal component analysis (PCA) into a support vector 
machine (SVM) algorithm for patient diabetes disease state classification. Their approach led to 
the realization that PCA with SVM performs well for diabetes mellitus prediction, leading to the 
attainment of about 93.66% predictive accuracy. Wu et al. [2018] incorporated the K-means into 
the logistic regression classier to model and predict diabetes. This approach also exhibited an 
improvement in the predictive accuracy with about 95.42% accuracy. 
Recently, Zhu et al. [2019] considered the use of both the PCA and K-Means clustering within the 
binary logistic regression framework. In particular, the dataset was reduced by applying the PCA 
technique followed by K-Means clustering. The resulting clustered dataset was used to fit a binary 
logistic regression. This led to an efficient binary logistic regression model for the early prediction 
of diabetes using the Pima Indian Diabetes dataset. Their approach suggested an improved logistic 
regression model for predicting diabetes, with 2.02% improvement over that of [Wu et al., 2018]. 
This suggests that the integration of the PCA and K-Means clustering technique improved the 
classification accuracy of logistic regression for the Pima Indian Diabetes dataset. 
The joint use of PCA and K-Means in logistic regression can be viewed as the current state-of-the-
art approach for improving the performance of the logistic classifier for diabetes modeling. 
However, though these techniques are appealing, there exist some drawbacks. First, they are 
susceptible to outliers and, as such, may still produce incorrect classification in the presence of 
data points that deviate from the expected range of values. This is because both K-Means and PCA 
are based on a measure of center (mean), which is not robust. For the PCA, the application of the 
above center is seen in the computation of covariance profiles. Thus, their use in logistic 
regression, regardless of the modeling framework, still inherits these drawbacks. Therefore, though 
the incorporation of the PCA and K-Means into the logistic regression improved the model 
classification accuracy in the studies of Zhu et al. [2019], they do not control for outliers. As a 
result, the improved accuracy observed may be due to the richness of the data or that the data 
contains no outliers. For instance, the K-Means are limited to some extent by the presence of 
outliers which leads to misclassification due to the outliers’ ability to drag the proposed centroid. 
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Second, the joint use of PCA and K-means in logistic regression may introduce extra 
computational expenditure. This is because computational challenges resulting from the use of a 
large dataset cannot be ruled out. Third, by principle, PCA is a data reduction technique that is 
meant to reduce the dimension of a large dataset for computational savings. Unfortunately, the 
reduced dataset offered by the application of PCA can still possess outliers if robust centers are 
not considered. In summary, PCA is not meant to control outliers; thus, outliers may still exist 
among the reduced dimensions. In particular, the PCA depends on the mean, which is sensitive to 
outliers for the computation of covariance matrices, thereby posing a drawback. Thus, reducing 
the data without controlling outliers might lead to a vital loss of information. Moreover, the 
reduced data might come with outlying information due to their inability to control them. 
In general, it is natural for every statistical data to have some outliers present regardless of the type 
and mode of collection. However, these outliers may constitute a valuable source of information 
or otherwise. Thus, if not properly handled can distort many measures in the data analysis and 
statistical modeling, thus disproportionate the estimated values of model parameters. Nevertheless, 
varied statistical techniques for modeling statistical data in the presence of outliers are challenged 
in terms of direct application. It is important to note that these observations can occur within the 
predictor or response space. That is a response can be an outlier as well as a predictor. In most 
cases, outliers are controlled within the response space but not the predictor space. Actually, 
deletion of an outlier may lead to loss of information or reduced information content of the data at 
hand. On the other hand, its inclusion in model specifications can pose challenges. 
Another appealing line of improvement on the predictive performance of binary logistic regression 
model in the Bayesian framework has been considered by [Asanya et al., 2021]. Asanya et al. 
[2021] proposed treatment for outliers in binary logistic regression, adopting the Bayesian 
approach with student t prior distributions considered robust for parameters in the case of small 
sample size. The authors claim that the student t distribution serves as a shock absorber to the 
outliers and other random fluctuations; thus providing robustness to the model. Their work was 
motivated by the work of Gelman [2007]. It is important to note that their application was in the 
direction of Immunotherapy where a dataset on wart treatment was used. Though their approach 
is novel, the treatment for outliers is seen in the response and parameter spaces but not within 
predictor space. The presence of outliers within the predictor can still affect the performance of 
the binary logistic regression model. This paper focuses on the development of computational 
methods that offer automatic outlier control and data reduction for enhanced predictive disease 
modeling. In particular, in this paper, robust priors similar to those used by Asanya et al. [2021] 
and robust predictors are considered within the Bayesian framework. We argue that statistical 
methods that can ensure automatic control for outliers both in the predictor and response spaces 
have the potential for substantial improvement in predictive performance. The rest of the paper is 
structured as follows. Section 2, formally introduces the binary logistic regression models based 
on the original data predictors as generative models for gestational diabetes mellitus data. Section 
3 gives a brief exposition on the alternative predictors for binary logistic regression with extraction 
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schemes based on the first non-central moment statistic formulated. Section 4 treats the 
incorporation of the alternative predictors into the proposed binary logistic regression models. 
Section 5 outlines both classical and Bayesian inference methods for fitting and inference for the 
developed models. Appropriate performance measures for assessing the binary logistic regression 
models are discussed in Section 6. Section 7 presents the description of the Pima Indian Diabetes 
dataset, as well as data preprocessing methods. Section 8 gives a brief on implementation of the 
methods. Some examples in simulation and real data applications are illustrated in Section 9 and 
Section 10 concludes the paper. 
 
2 Methods 

Let  1 2, , , ,my y y y    0 1 1, , , ,y i m    with 1iy   denoting the ith patient is diabetic and 

0iy   denoting ith patient non-diabetic. Also, let 1 2, , , ,p pX X X X     1 2, , , ,j j j pjX x x x     

1, ,j p   denotes a p-dimensional covariate (predictor) vector predicting y. Write 1, ,pX X     

where 1 denotes an m  column vector of 1s for an  1m p   design matrix, where we have 

written a′ as the transpose of the vector a. Write the success and failure probabilities as 

 1 ,i ip y    and  0 1i ip y     respectively. Then, the generative model for iy  is assumed 

to follow the Bernoulli probability model 

   11 0 1                              (1)| , .ii
yy

i i i i ip y    
     

We further model the set of predictors, pX  via a logit link function  

                                                          (2)
1
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 
  
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 0 1, , , p        is a set of 

regression coefficients of medical attribute predictors.  
Accordingly, the sampling distribution of the data can be expressed as 

   
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1

1                              (3)
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         
  

 Suppose there exist outliers in the predictor space (i.e among the spX ). Then, they need to be 

carefully handled but not deleted. We introduce a simple approach for handling them in the next 
Section 
3 Robust predictors for logistic regression 

Recall the design matrix X  with defining covariate vector pX . There is a possibility for each or 

some of these covariates to possess observations acting differently from the overall pattern 
underlying the predictor data. Deletion of such observation may lead to loss of information and 
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their inclusion may also influence the inference making process in some way. In fact, the outlying 
predictor observation if there exists constitute a vital information in terms of the defining features 
of the predictor data. Thus, there is the need to handle them in a controlled manner in model 
specification such that their contributions to the underlying structures in the data can be utilized. 
We consider the use of alternative covariates derived from the computation of non-central 
moments of random variables (probability density functions). The basic idea is to map the original 
predictors unto the predictor specific probability density functions space underlying the predictor 
data and use features based on the first non-central moments. In effect, by assessing the 
contributions of the predictors with the help of the density functions, robust covariates can be 
derived in place of the original. This leads to a principled probabilistic approach for determining 
vital covariates as well as controlling for outlying ones without deleting them. In what follows, we 

illustrate how the alternative covariates are derived. For each continuous covariate say jX  where  

 1 2      , , . . . , ,j p  we compute a statistic based on a non-central moment,                

   j j jC X x f x .    

The motivation for the above statistics is based on interesting features of moments of random 
variables or probability distributions. 

Consider the kth non-central moments of jX . 

                                         (4)k k
j j j jE X x f x dx





      

The integrand provides a natural way to access the contribution of each observation ijx  towards 

the common measure of center. With this, it is easily observed that observation with high 
contribution to a common center will be clustered around the center. Also, a contribution deviating 

appreciably from the underlying data structure will be located at the tails of the pdf. Thus,  jf x  

serves as natural predictor observation-specific weight, weighting appropriately the observations 
such that extreme ones are lowly weighted limiting their impact on the common center. Based on 

the above observations, the statistic  jC X  can be seen as appropriate to serve as an alternative 

covariate for logistic modelling. Thus, instead of using the 'jX s , we use the  jC X s  in 

modelling. 
The new covariate data structure will be of the form indicated in Table 1 



Journal of Biomedical Engineering 
ISSN: 1001-5515 

MANUSCRIPT
Vol. 40 No. 3 (2023) 

DOI: 10.105515/JBE.40.3.41 

 
 
 
 
 

316 
 

 
Furthermore, the corresponding design matrix can be expressed as  

     1 21                                         (5)( ) , , , , pC X C X C X C X     

where         1 2, , , .j j j mjC X C X C X C X
      

4 Application of robust covariates in logistic regression 
Now, applying the robust covariates (5), the model (2) becomes 

                                  (6)
1

log i
i
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This leads us to the likelihood function defined as 
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Consequently, the log-likelihood function of based on the robust covariates is 
 

       1
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1 1                           (8)
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           
   

5 Inference for logistic regression model 
5.1 Classical inference for Binary logistic regression 
In practice, deriving the maximum likelihood estimates (MLE) for logistic regression model is 
analytically complicated, hence, numerical methods are applied to compute the global maximizer 

j  in (8). In this study, we derived the MLE via the fisher scoring method. This is an iterative 

technique for deriving solutions to likelihood equations [see, Agresti, 2015]. In particular, it 
replaces the Hessian matrix (observed information) in Newton-Raphson method with the expected 
information matrix. The fisher scoring method is implemented in most packages in R. The 
application here considered the glm function in R. 
5.2 Bayesian Approach for Logistic Regression 
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Under the Bayesian framework, the estimation of model parameters is done via a posterior 

distribution    | , ,p C X y given some prior knowledge,  .p   Thus, given the prior 

knowledge,  p   for  , likelihood function,  |p y  , and a data vector y, the Bayesian 

inference about the parameter    is based on the posterior distribution given as 

      
 

                              (9)
|

| ,
p y p

p C X y
p y

 
   

where   ( | ) ( )p y p y p d     is a normalizing constant which ensures the posterior pdf 

integrates to unity. Hence, 

                                     (10)| , , |p C X y p C X y p    

Thus, to apply the Bayesian inference to logistic regression model, we need to combine the data 
likelihood and an appropriate prior distribution to compute quantities (mean and variance) that 
summarizes the posterior distribution. Accordingly, we specified the likelihood function for the 
Bayesian logistic model. In this paper we considered a student t-prior with three (3) degrees of 
freedom, location parameter zero (0) and scale parameter one (1) on both the intercept and 
coefficients of the model. The choice of this prior was motivated by the studies of Lange et al. 
[1989] which opined that flat priors allow for robust inference. Besides, the student t-prior 
distribution with location 0, ν degree of freedom and scale δ, is considered to constrain the 
parameter values to lie in a reasonable range, since minimal prior knowledge is provided [Raftery, 
1996]. The general student t-prior distribution with ν degree of freedom, location parameter µ, and 
scale parameter γ is of the form 

 

1
2 2

1
12

1         (11)
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 

 

Applying (11) to each of the regression coefficients, j , with the generic parameters, we 

have 
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For our application with the specified parameter values for the priors on the βs, the prior model 
(13) reduces to  
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  22
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                                                (13)
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Based on the specified likelihood function in (7) and the prior distribution (13), the posterior 
distribution can be expressed as 
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| ,  

 
Unfortunately, the posterior distribution in (14) has no closed form, hence, it is difficult to derive 
the marginal posterior corresponding to each coefficient by integration due to intractability. 
Therefore, approximations need to be applied to find an analytical expression for the posterior 
[see, Drugowitsch, 2019]. Accordingly, various techniques, for instance, stochastic techniques 
such as MCMC methods and deterministic techniques such as Variational Bayes methods exist in 
statistical literature for approximating posterior distributions. We adopt the MCMC approach to 
inference. 
5.2 MCMC Inference for Binary logistic regression 
This section focuses on exact Bayesian inference via the Markov Chain Monte Carlo method 
(MCMC). It is sometimes difficult to handle resulting posterior distributions from an assumed 
Bayesian model. This happens if the assumed model exhibits some complex structure based on the 
data likelihood and the joint prior probability models for all unknown parameters. For highly 
complex joint Bayesian posteriors, it is often hard to obtain the marginal parameter-wise posterior 
distributions for the development of an appropriate parameter inference scheme within the MCMC 
paradigm, since MCMC depends on the full conditionals of the parameters involved in a given 
model. It is straightforward to see that if the marginal posteriors of parameters in a given model 
can be obtained in closed or standard forms, it will motivate the use of a very simple MCMC 
method. In particular, when marginal posteriors of all parameters are available and can be 
identified in standard distributional form, then the appropriate MCMC method applicable is the 
Gibbs sampler. However, for parameters with no closed-form marginal posterior distributions, a 
general approach to inference is via the Metropolis-Hasting sampling algorithm. It may happen in 
some scientific problems for which the assumed statistical model considered within the Bayesian 
may have one or more parameters yielding closed-form marginal posteriors while others may not 
have marginal posteriors that can be identified to have some standard distributional form. In such 
a situation, there exists a mixture of closed-form and non-closed form marginal posteriors of 
parameters. An appropriate inference scheme for such problems must consider Gibbs steps for 
parameters with closed-form marginal posteriors and Metropolis-Hasting steps for parameters with 
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non-closed form marginal posteriors leading to a hybrid MCMC scheme [Hastings, 1970, 
Metropolis et al., 1953]. In particular, when the Metropolis-Hasting steps are embedded within the 
Gibbs steps, the resulting MCMC sampler is termed Metropolis-within-Gibbs sampler [Givens 
and Hoeting, 2013]. The hybrid type of MCMC samplers belong the advanced MCMC methods 
and readers are referred to Givens and Hoeting [2013], Gelman et al. [2013], and Andrieu and 
Thoms [2008] for more details on MCMC methods and its advanced counterparts. 
Now considering our binary logistic regression model and assessing the nature of the marginal 
posteriors associated with the parameters, we observe that regression parameters β’s all yield 
marginal posterior distributions that have no closed form. This condition presented by the marginal 
posteriors motivates the use of the Metropolis-Hasting method for parameter inference. As result, 
we develop a problem-specific Metropolis-Hasting (MH) sampler for inference. The inference 
algorithm is outlined in Algorithm 1. 

 
 
6 Performance evaluation 
In this paper, we considered some performance measures that existed in literature for the 
evaluation of the proposed methods. The performance of predictive models is based on the 



Journal of Biomedical Engineering 
ISSN: 1001-5515 

MANUSCRIPT
Vol. 40 No. 3 (2023) 

DOI: 10.105515/JBE.40.3.41 

 
 
 
 
 

320 
 

accuracy, sensitivity, specificity derived from the confusion matrix as shown in Table 2, as well 
as the area under (AUC) the receiver-operating-characteristics (ROC) curve. 

 
Table 2: Confusion matrix 

 
In particular, the accuracy measures the proportion of correctly classified predictions, thus, the 
ratio of correct classifications captured to the total cases (subjects). We defined accuracy as: 

r r

r s s r

T P T N
Accuracy

T P F P F N T N




  
 

Sensitivity also known as recall on the other hand is a measure of the proportion of correctly 
classified positive cases (subjects). It is derived as 

r

r s

T P
Sensitivity

T P F N



 

Specificity also known as precision is a measure of the proportion of correctly classified negative 
cases (subjects). It is derived as 

r

r s

T N
Accuracy

T N F P



 

Another performance measure considered is the receiver operating characteristics (ROC). It is a 
unified plot of the proportion of correctly classified positive cases (sensitivity) against the 
proportion of the incorrectly classified negative cases (1-specificity) for all possible thresholds 
(ranges between 0 and 1). This plot aids in the evaluation of a classifier’s performance based on 
the area under the curve (AUC) which is between 0 and 1. With regards to AUC, the 
classification algorithm is deemed good or able to discriminate when the area under the curve is 
large or above the diagonals [Fern´andez et al., 2018, Giancristofaro and Salmaso, 2003]. 
7 Data description 
This section provides a brief overview of the Pima Indian diabetes dataset sourced from the UCI 
repository of machine learning for this study. This data of size 768 by 9 is multivariate in nature, 
comprising the binary response and a set of predictors collected on eight medical attributes of 
suspected diabetic patients from Arizona, USA. The response in this dataset is whether a patient 
tested positive for diabetes or not, whereas the covariates considered were two patient-specific 
covariate - number of times being pregnancies (PRG) and age (in years), as well as six diabetes 
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disease diagnostic criteria covariates namely glucose (GLU), diastolic blood pressure (DBP), 
body mass index (BMI), insulin (INS), skinfold thickness 
(SFT), and diabetes pedigree function (DPF). The summaries of the dataset are provided in 
Table3. 
7.1 Data pre-processing 
The datasets were pre-processed to make it more productive in enhancing the fitting performance 
of models, due to the presence of missingness [zero (0) values] within the covariate or predictor 
space as revealed by the summary statistics of the original dataset in Table 4. 

 
In particular, since medical results cannot be zero (0), all minimum value of zero (0) for diabetes 
diagnostic covariates were imputed by the mean of these covariates (see Table 2). Besides, in 
line with the previous studies, the pregnancies variable was transformed into a 0/1 nominal 
feature, with 1 being previously pregnant and 0 being was never pregnant, since number of 
pregnancies has no association with diabetes [see, for instance, Patil et al., 2010]. 
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8 Implementation of methods 
The implementation of the proposed methods and algorithms were conducted using R statistical 
software. In particular, all codes were written in R and run on an Intel (R) Core (TM) i3–7020U 
CPU @ 2.30GHz workstation. Note that the construction of the robust covariates requires the 
estimation of the underlying probability density function of the data. As result, its implementation 
considered the kernel density estimation procedure implemented in the R package ks [Duong et 

al., 2007]. The kernel density estimator of  jf x  based on a random sample of original covariates 

1 2      , , . . . , mx x x is defined as 

 
1

1
                             (15)ˆ

m
j jt

j
i

x x
f x K

mh h

 
  

 
  

where K denotes a kernel and bandwidth h is smoothing parameter [Kankanige and Bailey, 2014]. 
In the implementation h in (15) was set to the smoothed cross-validation estimator implemented 
in the R package ks. Modeling fitting under the classical approach was done via the generalized 
linear model package, glm R. However, the Bayesian modeling fitting based on the Metropolis-
Hasting algorithm was implemented using the MCMC package, MCMC pack in R [Martin et al., 
2011]. In all the experimentation, the appropriate initialization utilized in the associated packages 
were considered. 
9 Examples 
We evaluate the performance of the proposed methods using simulation and real data application. 
Two sets of simulations are considered based on the real data pattern. First simulation focuses on 
generation of synthetic data via perturbation of the original covariates using their out of sample 
means and variances. In the second simulation, the perturbation is tailored towards varying the 
variance in the first simulation. This is to check if the observed performance is not sensitive to the 
variance. 
9.1 Example 1: Simulation 1 
In this example, we consider data generated in line with the real Pima Indian Diabetes dataset. The 
real data is perturbed appropriately within the predictor space based on the underlying features of 
the data. The rationale is to introduce some outlying observations across predictors at varying 
levels in order to access the performance of the proposed methods. Let δ denotes the level of 
perturbation of interest. We set the candidates for δ to be within (1% - 50%) in the predictor space. 
For each δ value, corresponding percentage of predictors were randomly replaced with new 
candidates generated as follows. 

 2  0                                   (16), ~ , ,
j jj X j j XX        

where 
jX  denotes the out of sample mean and 2

jX  is the variance. Using the above generation 

procedure, a synthetic diabetes dataset of the same size as the real dataset was generated. The 
proposed methods were then implemented using the simulated data. The results of the 
implementation are presented next. 
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Figure 9.1 shows the nature of the predictor information in terms of boxplot for the simulated 
dataset with 45% outlying observations introduced. The first, second and third plots are 
respectively the simulated predictor data, full robust covariate data, and reduced robust covariate 
data. Clearly, some significant differences among the boxplots are evident with most outlying 
observations automatically controlled. 
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Table 5 reports the predictive accuracy results of the proposed methods under both classical and 
Bayesian inference methods for first simulated example. It can observe that the presence of outliers 
can impair the predictive performance of the binary logistic regression for diabetes mellitus 
prediction regardless of the modelling framework. In particular, the results based on the perturbed 
data at all levels of δ (1% - 50%) clearly shows that some level of fluctuation exist in the predictive 
accuracy. However, the result based on the robust covariate (RC) contribution indicates that some 
level of consistency in predictive accuracy was ensured due to the automatic control of outliers. 
This therefore suggest that the high performance seen in the perturbed data was actually due to 
outliers, hence, the reduce performance under the RC contribution was as a result of the control. 
Furthermore, the result based on the RC reduced data shows that the reduction has offered 
significant improvement in predictive performance over the overall data with robust covariate 
contribution. The implication is that, though outliers have been controlled, not all data points are 
useful for modelling and predicting diabetes mellitus.  
9.2 Example 2: Simulation 2 
This simulation follows the settings in simulation 9.1 with some modification. The modification 
is in the direction of the variance. Here, predictors are replaced with assumed level, δ using 

 2 0                           (17), ~ , ,
j jj X j j XX N      

where Xjµ is as in example 9.1 and 2 .
jX jX   Also, a synthetic diabetes dataset of the same size 

as the real dataset was simulated and used to implement the proposed methods. The results of 
implementation of simulation study 2 are presented next. 

 
Figure 9.2 shows the distribution of covariate information for dataset generated in simulation 2, 
with about 50% outlying observation introduced. Similarly, the plot exhibits same pattern as 
established in Figure 9.1. Thus, some significant differences among the boxplots are evident with 
most outlying observations automatically controlled. 
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Table 6 presents results that aids the evaluation of the proposed method under simulation 2 via 
two modeling algorithms – classical and Bayesian approaches. The results thus shows that 
although the application of both the classical and Bayesian logistic algorithm to the robust 
covariates contribution data did not show any improvement in the predictive accuracy of the 
model over the perturbed data application at all levels of perturbation (δ), it could be observed 
that the application of these two classification algorithms to the RC reduced dataset resulted in 
enhanced predictive accuracy of the model at all levels. 
 
9.3 Example 3: Application to Pima Indian Diabetes data 
This section focuses on the results and discussion of application of the developed methods on the 
real Pima Indian Diabetes dataset. In particular, attention centered on the predictive performance 
in terms of the measures outlined in Section 6. 
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Figure 9.3 displayed the distribution of covariates information based on the pre-processed Pima 
diabetes dataset and data generated using both the full and reduced robust covariate. Clearly, the 
dynamics of the plot shows that although some level of outlying observations exists across multiple 
covariates in the plot of the real Pima dataset, there is evidence of these outliers being 
automatically controlled as seen in the plots of both the full robust covariate and reduced robust 
covariate data. Subsequently, the predictive performance of the proposed method is examined in 
both the Classical and Bayesian inference paradigms. Table 7 presents the predictive performance 
of the methods using the real Pima Indian Diabetes dataset. 

 
Table 7 report the predictive accuracy for proposed method’s application with real Pima Indian 
diabetes dataset under both classical and Bayesian logistic classifier. Generally, results under the 
Bayesian (MCMC) approach seems to be similar to that obtained under classical approaches, 
however, there is a marginal difference in the predictive accuracy under these two computational 
approaches. In particular, the result showed an improved accuracy of 78% and 67% under the 
MCMC approach for both real Pima data and robust covariate (RC) dataset respectively as 
compared to the classical approach which attained about 77% and 66% accuracy respectively. The 
implication is that, under the classical approach, the parameters are fixed but unknown, however, 
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under the MCMC approach, the parameters are assumed random and the uncertainties around how 
these parameters are quantified and calibrated via the prior information enabled an improvement 
in the predictive accuracy under the MCMC approach. Additionally, the results show an equal 
predictive performance, thus, 99% accuracy, under both classical and MCMC approaches for the 
RC reduced data. This finding suggest that predictors (covariates) are very critical in logistic 
regression, such that if an outlier exist within the predictor space, it can impair the performance 
regardless of the modelling framework, however, predictive performance remain same when 
controlled using density robust covariate and there is some sort of data reduction (thus, when 
unnecessary information is discarded). 
We next present the performance of the proposed method using the receiver-operating-
characteristics curve under both classical and Bayesian approaches and the result is presented in 
Figure 6 and Figure 7 respectively. 
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Comparatively, the result in Figure 6 and Figure 7 suggests that the area under the ROC curve 
under both classical and Bayesian application with the reduced dataset is significantly higher than 
those attained with the application of the method with the real Pima data and the RC contribution 
dataset, suggesting an excellent classification accuracy. 
10. Conclusion 
In this paper, we have proposed and implemented a novel approach for improving the predictive 
performance of Binary logistic regression for Gestational diabetes mellitus prediction using 
alternative predictors derived from the original predictor data. The alternative predictors are 
constructed as features from the underlying probability density functions of the original predictor 
variables via kernel density estimation, using the idea of moments about the origin. With the 
probability density functions as weights in the alternative predictors, observation-specific 
contributions underlying the predictors can be automatically assessed, allowing extreme values to 
be handled appropriately within the probability density space. This allows existing extreme values 
to be utilized for model building without deleting them as deletion leads to loss of information. In 
addition, the predictor-specific autocorrelations are treated automatically with the help of the 
kernel density estimation procedure. In this regard, the alternative predictors become robust to 
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extremes and predictor-specific autocorrelation. The above appealing features allow the 
development of binary logistic regression models in both the classical and Bayesian framework 
for public health problems as such modeling and prediction of gestational diabetes mellitus. 
Appropriate classical and Bayesian binary logistic regression models were developed using the 
alternative predictors (robust covariates). The usefulness of the developed methods in enhancing 
the predictive performances of binary logistic models for gestational diabetes mellitus is illustrated 
using both simulations and real data of the Pima Indian Diabetes data. Most importantly, it was 
realized from the experimentation using both simulations with varying degrees of outlying 
observations and real-data application that, the robust covariates allowed for automatic control of 
extreme values in the predictor spaces and ensured dimension reduction. These features enhanced 
the performance of the logistic classifier in both the classical and Bayesian computational 
approaches. In particular, the developed methods established that logistic classification algorithms 
performed at an improved level when implemented with reduced robust covariates as compared 
with their performance with the original covariates and the full contributions informed by the 
original covariates. In comparison with an existing state-of-the-art method that uses the PCA and 
K-Means clustering [Zhu et al., 2019], based on the Pima Indians diabetes dataset, the proposed 
methods outperformed it by an order of magnitude especially, with the reduced robust covariates. 
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